3.713 \(\int \cot ^2(c+d x) (a+b \tan (c+d x))^n \, dx\)

Optimal. Leaf size=245 \[ -\frac{b n (a+b \tan (c+d x))^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{b \tan (c+d x)}{a}+1\right )}{a^2 d (n+1)}-\frac{b (a+b \tan (c+d x))^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{a+b \tan (c+d x)}{a-\sqrt{-b^2}}\right )}{2 \sqrt{-b^2} d (n+1) \left (a-\sqrt{-b^2}\right )}+\frac{b (a+b \tan (c+d x))^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{a+b \tan (c+d x)}{a+\sqrt{-b^2}}\right )}{2 \sqrt{-b^2} d (n+1) \left (a+\sqrt{-b^2}\right )}-\frac{\cot (c+d x) (a+b \tan (c+d x))^{n+1}}{a d} \]

[Out]

-((Cot[c + d*x]*(a + b*Tan[c + d*x])^(1 + n))/(a*d)) - (b*Hypergeometric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*
x])/(a - Sqrt[-b^2])]*(a + b*Tan[c + d*x])^(1 + n))/(2*Sqrt[-b^2]*(a - Sqrt[-b^2])*d*(1 + n)) + (b*Hypergeomet
ric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*x])/(a + Sqrt[-b^2])]*(a + b*Tan[c + d*x])^(1 + n))/(2*Sqrt[-b^2]*(a
+ Sqrt[-b^2])*d*(1 + n)) - (b*n*Hypergeometric2F1[1, 1 + n, 2 + n, 1 + (b*Tan[c + d*x])/a]*(a + b*Tan[c + d*x]
)^(1 + n))/(a^2*d*(1 + n))

________________________________________________________________________________________

Rubi [A]  time = 0.361871, antiderivative size = 245, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 8, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.381, Rules used = {3569, 3653, 12, 3485, 712, 68, 3634, 65} \[ -\frac{b n (a+b \tan (c+d x))^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{b \tan (c+d x)}{a}+1\right )}{a^2 d (n+1)}-\frac{b (a+b \tan (c+d x))^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{a+b \tan (c+d x)}{a-\sqrt{-b^2}}\right )}{2 \sqrt{-b^2} d (n+1) \left (a-\sqrt{-b^2}\right )}+\frac{b (a+b \tan (c+d x))^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{a+b \tan (c+d x)}{a+\sqrt{-b^2}}\right )}{2 \sqrt{-b^2} d (n+1) \left (a+\sqrt{-b^2}\right )}-\frac{\cot (c+d x) (a+b \tan (c+d x))^{n+1}}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2*(a + b*Tan[c + d*x])^n,x]

[Out]

-((Cot[c + d*x]*(a + b*Tan[c + d*x])^(1 + n))/(a*d)) - (b*Hypergeometric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*
x])/(a - Sqrt[-b^2])]*(a + b*Tan[c + d*x])^(1 + n))/(2*Sqrt[-b^2]*(a - Sqrt[-b^2])*d*(1 + n)) + (b*Hypergeomet
ric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*x])/(a + Sqrt[-b^2])]*(a + b*Tan[c + d*x])^(1 + n))/(2*Sqrt[-b^2]*(a
+ Sqrt[-b^2])*d*(1 + n)) - (b*n*Hypergeometric2F1[1, 1 + n, 2 + n, 1 + (b*Tan[c + d*x])/a]*(a + b*Tan[c + d*x]
)^(1 + n))/(a^2*d*(1 + n))

Rule 3569

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b^2*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d)), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3485

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[(a + x)^n/(b^2 + x^2), x], x
, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 + b^2, 0]

Rule 712

Int[((d_) + (e_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m, 1/(a + c*x^2
), x], x] /; FreeQ[{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[m]

Rule 68

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((b*c - a*d)^n*(a + b*x)^(m + 1)*Hype
rgeometric2F1[-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b^(n + 1)*(m + 1)), x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 65

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)*Hypergeometric2F1[-m, n +
 1, n + 2, 1 + (d*x)/c])/(d*(n + 1)*(-(d/(b*c)))^m), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Inte
gerQ[m] || GtQ[-(d/(b*c)), 0])

Rubi steps

\begin{align*} \int \cot ^2(c+d x) (a+b \tan (c+d x))^n \, dx &=-\frac{\cot (c+d x) (a+b \tan (c+d x))^{1+n}}{a d}-\frac{\int \cot (c+d x) (a+b \tan (c+d x))^n \left (-b n+a \tan (c+d x)-b n \tan ^2(c+d x)\right ) \, dx}{a}\\ &=-\frac{\cot (c+d x) (a+b \tan (c+d x))^{1+n}}{a d}-\frac{\int a (a+b \tan (c+d x))^n \, dx}{a}+\frac{(b n) \int \cot (c+d x) (a+b \tan (c+d x))^n \left (1+\tan ^2(c+d x)\right ) \, dx}{a}\\ &=-\frac{\cot (c+d x) (a+b \tan (c+d x))^{1+n}}{a d}+\frac{(b n) \operatorname{Subst}\left (\int \frac{(a+b x)^n}{x} \, dx,x,\tan (c+d x)\right )}{a d}-\int (a+b \tan (c+d x))^n \, dx\\ &=-\frac{\cot (c+d x) (a+b \tan (c+d x))^{1+n}}{a d}-\frac{b n \, _2F_1\left (1,1+n;2+n;1+\frac{b \tan (c+d x)}{a}\right ) (a+b \tan (c+d x))^{1+n}}{a^2 d (1+n)}-\frac{b \operatorname{Subst}\left (\int \frac{(a+x)^n}{b^2+x^2} \, dx,x,b \tan (c+d x)\right )}{d}\\ &=-\frac{\cot (c+d x) (a+b \tan (c+d x))^{1+n}}{a d}-\frac{b n \, _2F_1\left (1,1+n;2+n;1+\frac{b \tan (c+d x)}{a}\right ) (a+b \tan (c+d x))^{1+n}}{a^2 d (1+n)}-\frac{b \operatorname{Subst}\left (\int \left (\frac{\sqrt{-b^2} (a+x)^n}{2 b^2 \left (\sqrt{-b^2}-x\right )}+\frac{\sqrt{-b^2} (a+x)^n}{2 b^2 \left (\sqrt{-b^2}+x\right )}\right ) \, dx,x,b \tan (c+d x)\right )}{d}\\ &=-\frac{\cot (c+d x) (a+b \tan (c+d x))^{1+n}}{a d}-\frac{b n \, _2F_1\left (1,1+n;2+n;1+\frac{b \tan (c+d x)}{a}\right ) (a+b \tan (c+d x))^{1+n}}{a^2 d (1+n)}+\frac{b \operatorname{Subst}\left (\int \frac{(a+x)^n}{\sqrt{-b^2}-x} \, dx,x,b \tan (c+d x)\right )}{2 \sqrt{-b^2} d}+\frac{b \operatorname{Subst}\left (\int \frac{(a+x)^n}{\sqrt{-b^2}+x} \, dx,x,b \tan (c+d x)\right )}{2 \sqrt{-b^2} d}\\ &=-\frac{\cot (c+d x) (a+b \tan (c+d x))^{1+n}}{a d}-\frac{b \, _2F_1\left (1,1+n;2+n;\frac{a+b \tan (c+d x)}{a-\sqrt{-b^2}}\right ) (a+b \tan (c+d x))^{1+n}}{2 \sqrt{-b^2} \left (a-\sqrt{-b^2}\right ) d (1+n)}+\frac{b \, _2F_1\left (1,1+n;2+n;\frac{a+b \tan (c+d x)}{a+\sqrt{-b^2}}\right ) (a+b \tan (c+d x))^{1+n}}{2 \sqrt{-b^2} \left (a+\sqrt{-b^2}\right ) d (1+n)}-\frac{b n \, _2F_1\left (1,1+n;2+n;1+\frac{b \tan (c+d x)}{a}\right ) (a+b \tan (c+d x))^{1+n}}{a^2 d (1+n)}\\ \end{align*}

Mathematica [C]  time = 0.728011, size = 190, normalized size = 0.78 \[ -\frac{\tan (c+d x) (a \cot (c+d x)+b) (a+b \tan (c+d x))^n \left (a^2 (b-i a) \, _2F_1\left (1,n+1;n+2;\frac{a+b \tan (c+d x)}{a-i b}\right )+(a-i b) \left (i a^2 \, _2F_1\left (1,n+1;n+2;\frac{a+b \tan (c+d x)}{a+i b}\right )+2 (a+i b) \left (b n \, _2F_1\left (1,n+1;n+2;\frac{b \tan (c+d x)}{a}+1\right )+a (n+1) \cot (c+d x)\right )\right )\right )}{2 a^2 d (n+1) (a-i b) (a+i b)} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^2*(a + b*Tan[c + d*x])^n,x]

[Out]

-((b + a*Cot[c + d*x])*(a^2*((-I)*a + b)*Hypergeometric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*x])/(a - I*b)] +
(a - I*b)*(I*a^2*Hypergeometric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*x])/(a + I*b)] + 2*(a + I*b)*(a*(1 + n)*C
ot[c + d*x] + b*n*Hypergeometric2F1[1, 1 + n, 2 + n, 1 + (b*Tan[c + d*x])/a])))*Tan[c + d*x]*(a + b*Tan[c + d*
x])^n)/(2*a^2*(a - I*b)*(a + I*b)*d*(1 + n))

________________________________________________________________________________________

Maple [F]  time = 0.22, size = 0, normalized size = 0. \begin{align*} \int \left ( \cot \left ( dx+c \right ) \right ) ^{2} \left ( a+b\tan \left ( dx+c \right ) \right ) ^{n}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^2*(a+b*tan(d*x+c))^n,x)

[Out]

int(cot(d*x+c)^2*(a+b*tan(d*x+c))^n,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (d x + c\right ) + a\right )}^{n} \cot \left (d x + c\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))^n,x, algorithm="maxima")

[Out]

integrate((b*tan(d*x + c) + a)^n*cot(d*x + c)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b \tan \left (d x + c\right ) + a\right )}^{n} \cot \left (d x + c\right )^{2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))^n,x, algorithm="fricas")

[Out]

integral((b*tan(d*x + c) + a)^n*cot(d*x + c)^2, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**2*(a+b*tan(d*x+c))**n,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (d x + c\right ) + a\right )}^{n} \cot \left (d x + c\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))^n,x, algorithm="giac")

[Out]

integrate((b*tan(d*x + c) + a)^n*cot(d*x + c)^2, x)